Quasi-exactly solvable relativistic soft-core Coulomb models
نویسندگان
چکیده
منابع مشابه
On quasi-exactly solvable matrix models
An efficient procedure for constructing quasi-exactly solvable matrix models is suggested. It is based on the fact that the representation spaces of representations of the algebra sl(2,R) within the class of first-order matrix differential operators contain finite dimensional invariant subspaces. The Lie-algebraic approach to constructing quasi-exactly solvable one-dimensional stationary Schröd...
متن کاملQuasi - exactly solvable models in nonlinear optics
We study a large class of models with an arbitrary (finite) number of degrees of freedom, described by Hamiltonians which are polynomial in bosonic creation and annihilation operators, and including as particular cases n-th harmonic generation and photon cascades. For each model, we construct a complete set of commuting integrals of motion of the Hamiltonian, fully characterize the common eigen...
متن کاملQuasi - Exactly Solvable Potentials
We describe three di erent methods for generating quasi-exactly solvable potentials, for which a nite number of eigenstates are analytically known. The three methods are respectively based on (i) a polynomial ansatz for wave functions; (ii) point canonical transformations; (iii) supersymmetric quantum mechanics. The methods are rather general and give considerably richer results than those avai...
متن کاملSaturation of Electrostatic Potential: Exactly Solvable 2D Coulomb Models
We test the concepts of renormalized charge and potential saturation, introduced within the framework of highly asymmetric Coulomb mixtures, on exactly solvable Coulomb models. The object of study is the average electrostatic potential induced by a unique “guest” charge immersed in a classical electrolyte, the whole system being in thermal equilibrium at some inverse temperature β. The guest ch...
متن کاملQuasi - Exactly - Solvable Differential Equations
A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of the algebra of differential (difference) operators in finitedimensional represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2012
ISSN: 0003-4916
DOI: 10.1016/j.aop.2012.07.002